Wahrscheinlichkeit & Statistik

Serie 5

- 1. Der Radius R eines kugelförmigen Teilchens sei uniform verteilt auf dem Intervall $[10, 100]\mu m$, und V bezeichne das Volumen dieses Teilchens.
 - a) Berechne den Erwartungswert von V.
 - b) Berechne die Dichte von V.

Wir nehmen nun an, der Radius R sei lognormal verteilt (eine Zufallsvariable Y heisst lognormal verteilt, falls log Y eine normalverteilte Zufallsvariable ist).

- c) Zeige: Wenn R lognormal verteilt ist, dann ist auch V lognormal verteilt.
- 2. Aufgrund langjähriger Untersuchungen ist bekannt, dass der Bleigehalt X in einer Bodenprobe annähernd normalverteilt ist. Ausserdem weiss man, dass der Erwartungswert 32 ppb (parts per billion) beträgt und dass die Standardabweichung 6 ppb beträgt.
 - a) Mache eine Skizze der Dichte von X und zeichne die Wahrscheinlichkeit, dass eine Bodenprobe zwischen 26 und 38 ppb Blei enthält, in die Skizze ein.
 - b) Wie gross ist die Wahrscheinlichkeit, dass eine Bodenprobe höchstens 40 ppb Blei enthält?
 - ${\it Hinweis:}$ Gehe zur standardisierten Zufallsvariablen Züber und benutze die Tabelle der Standardnormalverteilung.
 - c) Wie gross ist die Wahrscheinlichkeit, dass eine Bodenprobe höchstens 27 ppb Blei enthält?
 - d) Welcher Bleigehalt wird mit einer Wahrscheinlichkeit von 97.5% unterschritten? Das heisst, bestimme dasjenige c, so dass die Wahrscheinlichkeit, dass der Bleigehalt kleiner oder gleich c ist, genau 97.5% beträgt.
 - e) Welcher Bleigehalt wird mit einer Wahrscheinlichkeit von 10% unterschritten?
 - f) Wie gross ist die Wahrscheinlichkeit, die in Aufgabe a) eingezeichnet wurde?

- 3. a) Sei X eine $Exp(\lambda)$ -verteilte Zufallsvariable. Berechnen Sie Var[X].
 - b) Seien X und Y zwei stetige Zufallsvariablen mit gemeinsamer Dichte

$$f(x,y) = \begin{cases} 2 x e^{x(1-x)-y} & \text{für } 0 \le x \le y, \\ 0 & \text{sonst.} \end{cases}$$

Berechnen Sie die Dichte f_X der Randverteilung von X.

c) Seien X und Y zwei stetige Zufallsvariablen mit gemeinsamer Dichte

$$f(x,y) = \left\{ \begin{array}{ll} \frac{1}{2} & \text{für } 0 \leq x \leq y \leq 2, \\ 0 & \text{sonst.} \end{array} \right.$$

Berechnen Sie E[XY].

- 4. Welche der untenstehenden Aussagen ist richtig? Begründe deine Antwort.
 - a) Es gilt $P[X > t + s \mid X > s] = P[X > t]$ für alle $t, s \ge 0$, falls
 - 1. $X \sim \mathcal{U}(a, b)$.
 - 2. $X \sim \mathcal{P}(\lambda)$.
 - 3. $X \sim Exp(\lambda)$.
 - **b)** Sei $\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}s^2} ds$. Was gilt dann für $\Phi(-t)$?
 - 1. $\Phi(-t) = -\Phi(t)$.
 - 2. $\Phi(-t) = 1 \Phi(t)$.
 - 3. $\Phi(-t) = \Phi(t)$.
 - c) Sei $X \sim \mathcal{N}(0,1)$ und Y eine Zufallsvariable, sodass $X + Y \sim \mathcal{N}(1,6)$. Berechne E[Y].
 - 1. E[Y] = 0.
 - 2. E[Y] = 2.
 - 3. E[Y] = 1.
 - d) Die Dichte einer Zufallsvariablen X sei gegeben durch

$$f_X(x) = \begin{cases} c + x & \text{falls } -\frac{c}{2} \le x \le 0, \\ c - x & \text{falls } 0 \le x \le \frac{c}{2}, \\ 0 & \text{sonst.} \end{cases}$$

Bestimme die Konstante c.

- 1. $c = \frac{2}{\sqrt{3}}$.
- 2. $c = \frac{1}{\sqrt{3}}$.
- 3. $c = \frac{3}{\sqrt{2}}$.

e) Wir betrachten die Verteilungsfunktion $F_X(t)$ für die Zufallsvariable X aus d). Dann gilt:

1.
$$F_X(t) = \frac{1}{2}t^2 + \frac{2}{\sqrt{3}}t + \frac{1}{2}$$
 für $t \le 0$.

2.
$$F_X(t) = -\frac{1}{2}t^2 + \frac{2}{\sqrt{3}}t + \frac{1}{2}$$
 für $t \ge 0$.
3. Weder 1. noch 2. trifft zu.

- f) Sei $\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2}$, $t \in \mathbb{R}$. Was gilt dann für $\varphi(-t)$?
 - 1. $\varphi(-t) = -\varphi(t)$.
 - 2. $\varphi(-t) = 1 \varphi(t)$.
 - 3. $\varphi(-t) = \varphi(t)$.